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AB S T R A CT   

 

Artificial intelligence (AI) is reshaping the practice of internal medicine by enhancing diagnostic precision, 

optimizing clinical workflows, and supporting individualized patient care. As digital health technologies 

mature, AI is increasingly integrated across multiple medical domains, offering new opportunities and 

challenges for clinicians. This comprehensive review aims to provide an updated overview of the current and 

emerging applications of AI in internal medicine, highlighting its contributions across major subspecialties 

such as cardiology, endocrinology, nephrology, gastroenterology, hematology, and oncology. Recent literature 

demonstrates that AI algorithms, particularly those based on machine learning and deep learning, have 

achieved notable success in tasks such as medical imaging interpretation, pattern recognition in laboratory and 

clinical data, and prediction of disease outcomes. In cardiology, AI enhances ECG and echocardiographic 

analysis; in endocrinology and nephrology, it aids in early detection of diabetic and renal complications; and 

in oncology and hematology, it supports diagnostic pathology and prognostication. Despite this progress, 

translation into daily clinical practice remains limited due to challenges related to data quality, model 

interpretability, generalizability, data safety concerns and ethical considerations. In conclusion, AI holds 

significant promise to advance internal medicine by augmenting clinical decision making and promoting 

precision medicine. Real-world integration will require interdisciplinary collaboration, transparent model 

validation, and regulatory guidance to ensure reliability, safety, and equity. Continued clinical engagement and 

responsible implementation are essential for transforming AI’s technical potential into perceptible benefits for 

patient care. 
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Introduction 

In recent years, the landscape of internal 

medicine has begun to shift under the 

accelerating influence of artificial intelligence 

(AI). The growing availability of electronic 

health records (EHRs), wearable devices, 

imaging datasets, and other digital health 

sources has supported the rapid adoption of AI-

driven methods, particularly machine learning 

(ML) and natural language processing (NLP) 

for diagnostic, prognostic, and therapeutic 

applications across medicine [1-3]. Within 

  Journal of Bionic Memory                                                            Review Article 

mailto:draliaktas@yahoo.com
https://orcid.org/0000-0003-2811-0052
https://orcid.org/0000-0003-3651-4858
https://orcid.org/0000-0002-3836-2125
https://orcid.org/0000-0003-4201-9757
https://orcid.org/0000-0001-7028-9522
https://orcid.org/0000-0001-7306-5233


                                              Bilgin et al. / J Bionic Mem / 2025; 5(3):44-62 

   
 

45 
 

internal medicine practice, encompassing 

chronic disease management, multisystem 

assessment, and complex decision making, the 

promise of AI is particularly compelling. It 

would be helpful by assisting in early risk 

stratification, enabling more individualized 

treatment choices, and supporting 

overburdened clinicians. Therefore, AI tools 

hold the potential to enhance both efficiency 

and quality of care. For example, surveys of 

internists reveal that many perceive AI as 

improving diagnostic accuracy and treatment 

decisions, though adoption remains uneven 

across subspecialties [4]. Yet alongside this 

promise lie substantial challenges. The 

interpretability of many models with limited 

transparency, issues of data privacy, 

algorithmic bias, and workflow integration 

have been repeatedly cited as significant 

barriers in internal medicine settings [3,5]. 

Moreover, despite numerous proof-of-concept 

studies identified via medical literature, 

translation to real world implementation in 

general internal medicine remains limited [6].  

Against this backdrop, this review synthesized 

the medical evidence on AI in internal 

medicine. We examined the current state of 

applications, highlighted lessons from 

deployment, and outlined emerging 

opportunities as well as critical impediments to 

broader adoption. The aim is to provide 

internists, researchers, and policymakers with a 

clear and actionable overview of how AI is 

shaping the field today and how it may be 

meaningfully integrated into internal medicine 

practice in the coming years. 

 

AI in Endocrinology 

Diabetes remains the most extensively 

studied and best-validated area of AI 

applications in endocrinology. Artificial 

intelligence is now embedded across the entire 

care continuum from early risk prediction 

(identifying individuals at risk of developing 

diabetes) and glycemic forecasting, to closed-

loop insulin delivery systems (automated 

insulin pumps), insulin dosing decision support, 

integration of continuous glucose monitoring 

(CGM) and wearable data, and advanced 

patient self-management tools. These 

approaches have produced measurable 

improvements in time in range, hypoglycemia 

reduction, and patient self-management in 

many studies [7-9].  

AI applied to thyroid ultrasound and 

cytopathology, especially deep learning 

classifiers, can improve nodule malignancy risk 

stratification and help reduce unnecessary 

biopsies and surgeries. Several studies in the 

literature have shown rapid growth in 

ultrasound image-based models and have 

suggested potential cost-effectiveness in 

selected settings [10-12]. Though prospective 

data were presented, multicenter validation is 

still limited in this area. Beyond diabetes 

mellitus and thyroid disorders, AI research in 

endocrinology is still in its early stages, with 

fewer studies and validated applications. AI is 

increasingly used to build predictive models for 

metabolic disease complications, including 

cardiovascular and renal outcomes. Another 

promising area is the use of algorithms to 

support test ordering and result interpretation, 

including optimization of endocrine test panels 

and improvement of laboratory workflows. 

Early efforts have applied machine learning to 

pituitary and adrenal disease diagnostics as well 

as to rare endocrine tumor phenotyping, but 

most remain proof-of-concept or retrospective 

studies. Overall, the literature shows promise 

but far fewer high-quality, prospective clinical 

evaluations than in diabetes [13-15].  

Common methods include traditional machine 

learning approaches (random forests, gradient 



                                              Bilgin et al. / J Bionic Mem / 2025; 5(3):44-62 

   
 

46 
 

boosting), deep learning architectures  

(convolutional neural networks, vision 

transformers, and hybrid architectures for 

imaging), and interpretable models designed 

for clinical deployment.  Data sources are 

electronic health records, laboratory databases, 

imaging (ultrasound), continuous glucose 

monitoring and wearables, and, increasingly, 

multimodal datasets combining genetics and 

clinical data [13,16].  

For diabetes mellitus (closed loop systems, 

predictive glycemia models), there is good 

evidence of clinical benefit in trial settings. For 

most other endocrine applications, evidence is 

often limited to retrospective cohorts, single-

center studies, or algorithmic performance 

metrics (AUC, sensitivity, and specificity) 

rather than robust clinical outcome trials. 

Researchers repeatedly call for prospective, 

multicenter, and implementation studies to 

show real-world effectiveness and cost-

effectiveness [7,13,17]. 

Key challenges highlighted in the literature 

include generalization, explanation, data 

quality, validation, and clinical integration of 

those studies on AI use in medicine. Models 

trained on narrow populations often perform 

worse when moved to different hospitals, 

devices, or demographic groups. Moreover, 

clinicians require interpretable outputs to build 

trust and support decision-making; however, 

the uninterpretability of black-box models 

remains a major barrier to their adoption. In 

addition, missing data, variable coding, and 

pooled records limit model performance in the 

reports in the literature. Regulatory approvals 

exist for some diabetes mellitus devices, but 

most endocrine AI tools lack prospective 

regulatory-grade validation. Consequently, 

clinical acceptance is limited. Integration of AI 

into electronic health records and clinical 

workflows, and the human factors around alerts 

and recommendations, are frequent barriers 

[8,10,13].  

Practical recommendations for clinicians 

and researchers may include the definition of 

validated problems. The adoption of AI should 

focus on areas where prospective evidence 

exists, such as regulatory-approved closed-loop 

insulin delivery systems, and where 

performance has been validated in large 

populations. Before local deployment, 

researchers should insist on model performance 

reported on external cohorts and subgroup 

analyses for equity. The researchers and 

clinicians should prefer interpretable models 

for decision support where possible. 

Implementation studies should be planned. 

They could be built in prospective monitoring 

of clinical outcomes, workflow impact, patient-

reported outcomes, and cost implications. 

 

AI in Nephrology 

Artificial intelligence, including supervised, 

self-supervised, and federated learning 

approaches, is being actively developed across 

the nephrology continuum, from early detection 

and risk prediction (especially for acute kidney 

injury (AKI) and chronic kidney disease (CKD) 

progression), through dialysis optimization and 

remote monitoring, to image-based renal 

pathology and transplant biopsy interpretation. 

Recent data in the literature describe rapid 

growth in both methods and clinical use cases, 

with the strongest clinical evidence in AKI 

prediction, dialysis session optimization, and 

some renal pathology image analysis tasks 

[18,19]. Predicting AKI earlier than 

conventional creatinine-based rules is the most 

mature and visible application. Multiple ML 

models, including deep learning, trained on 

large electronic health record datasets, can 

predict imminent AKI (hours to days ahead), 

provide dynamic risk scores, and forecast in-
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hospital mortality for AKI patients. These 

models improve identification of at risk 

patients, enabling earlier monitoring and 

intervention in retrospective and some 

prospective evaluations, but prospective 

clinical outcome evidence of reduced hard 

endpoints (mortality, dialysis need) remains 

mixed and limited [20,21]. AI has been used to 

identify undiagnosed CKD from routine 

laboratory values and electronic health record 

signals, to predict which patients will progress 

to advanced CKD or kidney failure, and to 

stratify risk for cardiovascular complications. 

Recent studies highlighted promising 

discrimination metrics across many models but 

noted heterogeneity in predictors, cohorts, and 

outcome definitions, as well as a lack of 

generalizable external validation. Explainable 

ML approaches are being explored to increase 

clinician trust [22,23]. In dialysis, artificial 

intelligence is being applied to help anticipate 

intradialytic hypotension, guide ultrafiltration 

and treatment planning, identify access 

complications early, and analyze large session 

datasets to improve care quality. Several studies 

demonstrated accurate prediction of session 

level events and point toward precision dialysis 

systems that adapt parameters in near real time, 

but most work is algorithmic or retrospective; 

randomized implementation trials are scarce 

[19,24]. Moreover, the integration of digital 

pathology and deep learning has rapidly 

advanced the detection and quantification of 

renal lesions, including glomerulus 

identification, lesion segmentation, fibrosis 

scoring, and automated lesion classification. 

Published models can match or exceed 

pathologists’ performance on specific tasks in 

independent test sets and accelerate workflow. 

Renal pathology is increasingly recognized as 

one of the most promising fields for applying 

image-based AI in clinical practice [25]. 

Nevertheless, wider validation across centers 

and consistent standards are needed before such 

tools can be used routinely. Artificial 

intelligence has also been applied to predict 

graft survival and acute rejection, and to 

interpret transplant biopsies. Recent deep 

learning studies using whole slide images report 

strong performance for detecting and subtyping 

rejection and for identifying features predictive 

of graft loss, sometimes outperforming local 

pathologists on technical metrics [25,26]. These 

developments are promising for earlier and 

more standardized interpretation of transplant 

pathology and for graft outcome 

prognostication, yet prospective validation 

studies and regulatory approval are still 

required. Most nephrology AI studies draw on 

data from electronic health records (including 

laboratory values, vital signs, and medications), 

dialysis machine and session logs, imaging and 

whole-slide pathology, and, less frequently, 

biomarkers and genomics. Methods range from 

gradient boosted trees and random forests to 

recurrent and transformer style deep networks 

for time series and image convolutional nets for 

pathology [20,25]. Explanation ability 

techniques (Shapley Additive Explanations 

[SHAP] and attention visualization) are 

increasingly reported to improve 

interpretability. 

 

AI in Gastroenterology 

AI models are being used in endoscopy and 

lesion detection. Indeed, one of the most 

advanced applications of AI in 

gastroenterology is in gastrointestinal (GI) 

endoscopy. Computer-aided detection (CADe) 

of polyps in colonoscopy, computer-aided 

diagnosis and classification (CADx) of lesions, 

including colorectal polyps, Barrett’s 

esophagus, early gastric cancer,  and analysis of 

capsule endoscopy videos are methods of AI 
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use in gastroenterology practice [27]. For 

example, a study noted that AI tools are 

available for the entire gastrointestinal tract and 

hepatobiliary system [28]. A meta-analysis 

found that for the diagnosis of early gastric 

cancer (EGC) using AI-based endoscopic 

systems, the pooled area under the curve (AUC) 

was approximately 0.96 (95% CI, 0.94–0.97), 

with a sensitivity of about 86% (95% CI, 77–

92%) and specificity of about 93% (95% CI, 

89–96%) [29]. In a review of registered clinical 

trials, about half of the AI studies in 

gastroenterology were related to endoscopy, 

most often focusing on detecting or classifying 

colorectal neoplasia [30]. Capsule endoscopy 

represents an ideal imaging domain for AI 

applications due to the substantial video data 

burden, a point emphasized in a recent review 

of AI in endoscopy [31].  

Beyond lesion detection, AI and ML 

techniques have also been applied to predict 

outcomes in hepatobiliary diseases, such as 

survival after hepatocellular carcinoma 

resection [32]. It is also helpful in predicting 

treatment response in inflammatory bowel 

disease, for example, by identifying which 

patients are most likely to benefit from biologic 

therapy. [32]. Moreover, it is beneficial for 

evaluating bowel preparation quality and 

automatically assessing endoscopic quality 

metrics [28].  

Recently, AI has been applied to 

hepatobiliary and pancreatic diseases, including 

imaging-based approaches for liver fibrosis, 

cirrhosis, hepatocellular carcinoma detection, 

and pancreatic cyst classification. [33]. 

Researchers are increasingly testing AI tools to 

assist with endoscopy workflows, including 

mucosal feedback, automated quality control, 

and real-time procedural guidance [28]. These 

systems may also support remote monitoring in 

high-risk gastroenterology and hepatology 

populations, such as patients with cirrhosis who 

require regular follow up [32].  

In colonoscopy, the use of AI for polyp 

detection has been shown in meta-analyses of 

randomized controlled trials to reduce adenoma 

missing rate and increase adenoma detection 

rate. One meta-analysis concluded that AI 

assistance significantly reduces miss rates of 

adenomas and polyps [34]. For early gastric 

cancer, the systematic review reported very 

strong diagnostic metrics (AUC about 0.96) for 

AI in early gastric cancer diagnosis via 

endoscopy [29]. Reports in literature conclude 

that AI currently outperforms or matches expert 

human performance in specific image detection 

and classification tasks in the GI system [29]. A 

recent web-based study in the Asia-Pacific 

region found high acceptance of AI in 

gastrointestinal endoscopy, with 83% of 

respondents accepting computer-aided 

detection and 78.8% accepting computer-aided 

diagnosis and classification among 

gastroenterologists and gastrointestinal 

surgeons. [35].  

Despite encouraging advances, many 

reviews highlight significant limitations. Key 

challenges include study bias, the black-box 

nature of models, data heterogeneity, and 

ethical concerns. Models developed in a single 

center or within narrow populations often 

perform less reliably when applied elsewhere, 

for example, across different devices, patient 

groups, or imaging modalities 

[36].  Additionally, clinicians may hesitate to 

trust AI recommendations without a detailed 

explanation [33]. Differences in imaging 

protocols, endoscopic equipment, video 

quality, and documentation practices often 

prevent effective data pooling and model 

development. Ethical questions also arise, 

particularly around who is responsible when 

AI-assisted systems contribute to diagnostic 
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errors in endoscopy. In addition, data privacy,  

intellectual property, and cybersecurity remain 

prominent concerns [32,33]. Detection rates 

rise in trials; however, real-world outcomes, 

such as reductions in interval cancers and cost 

savings, are less well established. Also, 

integration with endoscopy suites and clinician 

workflows is nontrivial. 

In evaluating AI tools for endoscopy, 

clinicians, researchers, and administrators 

involved in gastrointestinal practice should give 

priority to externally validated, multicenter 

studies with human comparators and 

prospective trial data. Moreover, they should 

ensure that the device and AI tool are validated 

for the specific endoscopy system, patient 

population, and clinical workflow at the 

institution. Researchers should prefer tools that 

provide interpretable outputs or allow human in 

the loop decision making rather than fully 

autonomous action. Physicians should remain 

vigilant for unintended consequences, such as 

higher false-positive rates, longer procedure 

times, and alarm fatigue during endoscopy. 

Outside of endoscopy, including in IBD, 

hepatology, and pancreatic disease, AI should 

be considered an adjunctive, exploratory 

technology at present, since the deployment 

should be accompanied by monitoring of 

clinical outcomes and cost outcomes.  

 

AI in Hematology 

AI applications in hematology span 

automated peripheral blood and bone marrow 

morphology, flow cytometry analysis, digital 

pathology (whole slide images), genomics and 

molecular profiling, clinical risk prediction and 

prognostication, and operational or laboratory 

automation. Recent studies have documented 

the rapid expansion of deep learning and other 

machine learning approaches across these 

domains, emphasizing that image-rich tasks, 

such as blood smears, whole-slide imaging, and 

flow cytometry plots, represent the most mature 

applications to date [37,38]. Convolutional 

neural networks and related image recognition 

pipelines can detect, classify, and count red 

blood cells, white blood cells, and platelets with 

accuracy approaching experienced 

technologists for many tasks, such as WBC 

differential and schistocyte detection. Large 

annotated datasets and smartphone microscopy 

approaches have accelerated model training and 

potential point of care use [39,40]. Moreover, 

deep learning is being applied to whole slide 

bone marrow images for slide level 

representations, blast quantification, and 

automated detection of dysplasia or leukemia 

features. Early studies showed good slide level 

performance and promise to reduce pathologist 

workload, but multicenter standardization 

remains necessary [41]. AI methods have also 

shown utility in flow cytometry. The technique 

generates high-dimensional data that are well-

suited to machine learning (ML). Recent cross-

institutional frameworks and reviews 

demonstrate that ML can standardize gating, 

detect abnormal cell populations, and classify 

conditions such as acute leukemia with very 

high AUC and accuracy when trained on well-

annotated, multisite datasets. Guidance papers 

now propose risk tiers, validation and 

revalidation workflows, and governance for 

clinical flow cytometry ML [42,43].  

AI applied to hematoxylin and eosin (H&E) 

and immunofluorescent staining can assist 

diagnosis by enabling lymphoma subtyping on 

biopsies, quantitative assessment of cellularity 

and fibrosis, and biomarker inference. These 

image based models can sometimes perform as 

well as, or even better than, human experts in 

specific diagnostic tasks. These image based 

models may match or exceed human 

performance on narrow tasks and are attractive 
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for workload triage and objective scoring; 

however, performance is sensitive to stain and 

scanner variation and requires robust external 

validation [44].  

ML and deep learning are also used to 

classify genomic signatures such as subtypes of 

AML or ALL, to predict prognosis from 

mutation panels and gene expression, and to aid 

variant interpretation and therapy matching in 

hematology practice. Multimodal models 

combining molecular and clinical data show 

promise for personalized prognostication and 

treatment selection, but many are still 

retrospective and need clinical trial testing [37]. 

AI is also beneficial for prognosis prediction, 

risk stratification, and clinical decision making 

as a supportive tool. Models have been 

developed to predict outcomes such as relapse, 

response to therapy, post-transplant graft 

survival, and the risk of complications, 

including infection and thrombosis. Several 

studies reported good discrimination, but the 

literature often lacks prospective trials showing 

that model-guided decisions improve patient 

level outcomes. Implementation studies remain 

limited [37,45]. In addition, AI is used to triage 

or prioritize slides for review, reduce false 

positives, automate cell counts (e.g., hemogram 

analyzers with onboard image analysis), and 

enable near-patient testing using finger-prick 

analyzers and smartphone-based microscopy 

[39,46]. These tools can increase throughput 

and reduce human workload when validated 

appropriately.  

Prospective multicenter studies that test 

whether AI-guided workflows improve 

meaningful patient outcomes (survival, relapse 

rates, transfusion needs) are still needed. 

Standardized benchmarks and external datasets 

for smear, marrow, and flow cytometry tasks 

are required to compare models fairly. 

Multimodal models that integrate imaging, 

flow cytometry, genomic, and clinical time-

series data could enhance precision 

prognostication and therapy selection. 

 

AI in Cardiology 

Artificial intelligence applications in 

cardiology have progressed considerably, 

especially in domains supported by large, well-

annotated datasets such as electrocardiography 

(ECG), cardiovascular imaging, device 

telemetry, and electronic health records 

(EHRs). Across those domains, deep learning, 

especially convolutional and recurrent 

architectures, gradient boosted trees, and 

multimodal models, are the common 

approaches. Recent literature highlights the 

rapid development of technically strong 

models, with a smaller but growing body of 

prospective validation studies, clinical 

implementation research, and regulatory 

approvals [47-49]. One of the most significant 

areas is the detection and classification of 

cardiac arrhythmias. Deep learning models 

applied to both single-lead and 12-lead ECG 

recordings have shown high diagnostic 

accuracy, often matching or even exceeding 

cardiologists on benchmark datasets. [47,50]. 

These models power consumer and clinical 

devices (wearables, ambulatory monitors) and 

large-scale screening tools. AI can also infer 

structural or future risk signals, such as 

detection of reduced ejection fraction, 

prediction of future atrial fibrillation, or 10 year 

cardiovascular risk from ECG traces that appear 

normal to clinicians [51]. Such predictive ECG 

AI tools are now being trialed at scale in health 

systems. AI plays a growing role in cardiac 

imaging. In echocardiography, automated view 

detection, chamber quantification, and even 

near complete interpretation pipelines are 

showing strong cross-site performance in large 

multicenter studies. AI can accelerate image 
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interpretation, reduce interobserver variability,  

and enable screening in point of care contexts 

[48,52]. Prospective evaluations of AI 

integration into clinical workflows are 

increasingly. In coronary angiography via 

computerized tomography, AI assists coronary 

plaque quantification and supports non-

invasive ischemia assessments, such as CT 

based fractional flow reserve models, to triage 

patients more effectively [53]. Moreover, AI 

reduces segmentation and/or analysis time, 

standardizes tissue characterization, and is 

being explored for prognostication from 

imaging phenotypes, addressing cardiac 

magnetic resonance imaging (MRI) workforce 

bottlenecks in cardiac MRI studies. High 

impact work shows strong diagnostic and/or 

predictive performance in cardiac MRI tasks 

[54,55]. AI and ML models are widely applied 

to predict readmission, mortality, pump failure, 

and to personalize therapy (device and titration) 

in patients with heart failure. Systematic 

reviews show many promising models for 30-

day readmission and mortality prediction, but 

variable methodological quality, frequent lack 

of external validation, and limited proof that 

model-guided care changes hard outcomes 

[56,57]. In interventional cardiology, AI is used 

for procedural planning (CT-derived planning 

for percutaneous coronary intervention, 

coronary arterial bypass grafting), intra-

procedural image guidance, and to analyze 

catheterization laboratory data for quality 

improvement [53]. Despite intense research 

activity, clinical adoption requires strong 

integration into catheter laboratory workflows 

and regulatory clarity. A growing number of 

cardiovascular AI tools have obtained Food and 

Drug Administration (FDA) or other regulatory 

clearance for specific clinical uses (ECG-based 

risk tools, automated image quantification, 

device diagnostics). Analyses of approved 

devices show diversity in applications but also 

wide variation in the level of publicly available 

validation evidence; therefore, clinicians 

should appraise each tool’s external validation 

and intended use [49,58]. Larger and 

multicenter randomized or implementation 

studies that test whether AI-guided actions 

change clinical outcomes, including mortality, 

readmissions, and major adverse cardiac 

events, are required. Standards for transparent 

reporting, external validation, and real-world 

performance monitoring are also necessary. 

There is a growing demand for explainable AI 

approaches aligned with clinical workflows to 

support adoption and safe implementation.  

 

AI in Oncology 

Deep learning models have substantially 

improved automated detection, segmentation, 

and characterization of lesions on CT and/or 

MRI and mammography; several tools are now 

approved for clinical use and have shown value 

in triage and workflow prioritization [59,60]. 

These image tasks are among the most mature 

AI applications in cancer care. AI is also 

applied to whole slide images to identify 

cancer, grading tumors, quantifying immune 

and/or inflammatory infiltrates, and even 

suggesting molecular correlates from 

hematoxylin-eosin stained slides alone in some 

settings [61]. Pathology is a rapidly advancing 

domain where AI is improving diagnostic 

consistency and unlocking new biomarkers. 

Machine learning methods that integrate 

genomics, radiomics, and clinical data are being 

used to derive predictive biomarkers, such as 

identifying which patients will respond to 

immunotherapy or targeted therapies, and to 

stratify patients for precision treatment [62]. 

Results are promising, but most studies are 

retrospective and still need prospective, 

practice-changing validation. AI is also being 



                                              Bilgin et al. / J Bionic Mem / 2025; 5(3):44-62 

   
 

52 
 

used across the drug development pipeline;  

target identification, virtual screening, lead 

optimization, and to optimize trial design and 

patient selection, shortening timelines and 

prioritizing candidates for testing [63]. Several 

industry–AI collaborations illustrate this trend.  

Meta-analyses and systematic reviews show 

very high AUCs for specific detection and 

classification problems, including some cancer 

image classification tasks [64,65]. AI often 

matches or exceeds human readers on 

benchmark datasets for narrowly defined 

problems. It reduces reading time in radiology 

and pathology, flags high risk laboratory test 

results for rapid review, and reduces 

interobserver variability on scoring tasks [60]. 

Multimodal AI systems can detect subtle 

imaging or histologic patterns that correlate 

with genomic alterations and clinical outcomes, 

thereby opening new avenues for developing 

low cost surrogate biomarkers in cancer 

detection [61].  

In the future, prospective, multicenter, 

randomized clinical trials are needed to 

determine whether AI-guided decisions 

improve patient outcomes rather than merely 

enhance diagnostic accuracy. These trials 

should be integrated with clinical workflows 

and governance; clear user interfaces, clinical 

pathways for action, and monitoring systems 

for performance drift and safety. 

 

Large Language Models in Internal 

Medicine 

Large Language Models (LLMs) trained on 

large datasets interpret information from EHR 

records, clinical notes, and guidelines, and 

deliver strong results on tasks such as clinical 

summarization, diagnostic reasoning, and 

treatment guideline extraction. The most well-

known of these are ChatGPT [66] developed by 

OpenAI, Copilot [67] by Microsoft, Gemini 

[68] by Google, and LlaMA [69] by Meta. The 

field of internal medicine, where text-dense 

data such as clinical notes, discharge 

summaries, guidelines, drug labels, research 

articles, and patient messages are abundant, 

naturally represents the ideal environment for 

LLMs to operate most effectively.  

LLMs are trained mainly on uncontrolled 

data available online, and the responses 

provided depend on this data. Therefore, the 

biggest challenges to the safe use of LLMs in 

medicine are data bias [70], lack of 

transparency, data privacy risks [71], and the 

production of erroneous responses, known as 

hallucinations. These problems can lead to 

serious diagnostic errors in medical practice, 

and therefore, models should only be used after 

undergoing rigorous clinical validation. 

Systematic reviews published in recent years 

have shown that LLMs are promising in many 

areas such as clinical documentation, rapid 

access to information, decision support and 

patient communication, but can be inaccurate 

and potentially harmful when used without 

supervision in real-life conditions [72]. 

Fine-tuning with domain-specific clinical data 

plays a key role in increasing model reliability. 

Instead of merely improving general language 

fluency, this process helps the model produce 

accurate and consistent outputs that align with 

the clinical context in which it is used [73]. In 

addition, the Retrieval-Augmented Generation 

(RAG) framework contributes to transparency 

and traceability by allowing the model to 

formulate responses based only on recent and 

validated information sources [74]. 

Additionally, techniques such as federated 

learning [75] and differential privacy enable 

patient data to be processed locally without 

leaving the institutional environment; however, 

these methods still cannot provide absolute 

privacy. For this reason, ensuring the safe and 
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reliable use of LLMs in clinical practice 

requires more than technical safeguards alone. 

It also depends on the establishment of 

continuous performance monitoring, regulatory 

frameworks, and robust ethical oversight 

mechanisms. 

Endocrinology 

In a study of patients with type 2 diabetes 

mellitus, 31% of endocrinologists chose 

metformin for treatment, while 12% preferred 

the GPT 4 model. However, GPT 4 was more 

conservative than endocrinologists, preferring 

metformin less in patients with kidney 

dysfunction or a history of gastrointestinal 

distress [76]. 

Mondal and colleagues compared physicians 

and the GPT-4 model in type 2 diabetes 

treatment planning and found that physicians 

ordered fewer missing medications, while 

GPT-4 prescribed fewer unnecessary 

medications. However, they identified safety 

issues in 16% of treatment plans created with 

GPT-4 [77]. 

Another study examined the consistency of 

GPT-4 in thyroid nodule biopsy decisions. The 

GPT-4 response was evaluated using different 

types of prompts, including those aimed at 

reducing unnecessary biopsies, those based on 

ATA guidelines, and those based on TI-RADS 

guidelines. They demonstrated that GPT-4 

biopsy recommendation rates varied 

significantly even for the same clinical 

scenario, depending on the prompt format used 

[78]. ThyGPT is a multimodal artificial 

intelligence model based on LLaMA-3, 

developed to classify thyroid nodules by 

evaluating ultrasound images, USG reports, and 

thyroid guidelines together. The model 

functions as a clinical "copilot" that can interact 

with radiologists in natural language to explain 

diagnostic rationale, thus providing both 

decision support and interpretability. The study 

demonstrated that ThyGPT significantly 

increases radiologists' diagnostic accuracy, 

reduces unnecessary biopsies, and does so 

without increasing the risk of missed cancer 

[79]. 

LLMs demonstrate strong performance in 

providing patient information and clear answers 

to frequently asked questions; in areas such as 

diabetes and thyroid, the quality of 

communication and accuracy of explanations 

often approaches, and in some cases even 

surpasses, physician levels. However, the 

picture is more complex for clinical decision 

support and treatment planning, and they 

should be viewed as "helpful tools" for 

treatment planning and drug regulation, which 

still face experimental and safety concerns. 

 

Nephrology 

Nephrology, where patient education, diet, 

and fluid management, and informed 

medication use are crucial in conditions such as 

chronic kidney disease, has become a field 

where LLMs can be effectively used. LLM-

based chatbots can help patients better 

understand complex treatment regimens, such 

as dialysis schedules, medication adjustments, 

and dietary restrictions. Automated 

documentation and report generation through 

EHR integration may also reduce physician 

workload. Moreover, LLM-powered 

monitoring systems can support early detection 

and timely alerting for high-risk clinical 

scenarios such as acute kidney injury (AKI) 

[80]. 

A systematic review also evaluated the 

application of LLMs in four key areas in 

nephrology; patient education, workflow 

optimization, dietary guidance, and laboratory 

data analysis. GPT-4 and other models have 

demonstrated high accuracy in tasks such as 

patient information and data interpretation [81]. 
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Gastroenterology 

Language models are quite helpful in 

gastroenterology, particularly for patient 

education in patients with IBD and chronic liver 

disease, colonoscopy preparation instructions, 

diagnostic algorithms, guideline summaries, 

literature reviews, and scientific manuscript 

preparation [82]. 

LLMs have been able to provide mostly 

guideline-compliant answers to questions about 

many diseases, including IBD and IBS [83], H. 

pylori [84], gastroesophageal reflux disease 

(GERD) [85], colonoscopy and colorectal 

cancer [86], pancreatic cancer [87], and liver 

diseases [88]. 

Oncology and Hematology 

Oncology and hematology are among the 

fields with the heaviest information load due to 

complex guidelines, rapidly changing 

treatments, and numerous clinical trials. Studies 

are being conducted on large language models 

for clinical question-answering and second-

opinion support. LLMs can provide literature-

based answers to topics such as staging, 

treatment plans, and follow-up protocols [89]. 

Clinical decision-making in oncology requires 

integrating multiple data types (e.g., text and 

images). One study developed an autonomous 

AI agent that integrated GPT-4 with imaging, 

pathology, and genomic analysis tools to test 

the accuracy of personalized clinical decisions 

in oncology. The model achieved 87.2% correct 

treatment and diagnostic decisions on 20 

clinical cases evaluated by experts [90]. 

Carl et al. evaluated the use of large 

language models in oncology for medical 

information, diagnosis, and recommendations. 

Although LLMs show high potential, they 

require further validation studies before clinical 

application due to differences in accuracy, 

hallucinations, and lack of standard pathology 

[91]. 

Cardiology 

Brown et al. [92] demonstrated that large 

language models can be used to integrate social 

risk factors into predictive tools for estimating 

30-day readmission after acute myocardial 

infarction. Similarly, Dewaswala et al. [93] 

noted that LLMs can interpret cardiac MRI 

reports to help the identification of hypertrophic 

cardiomyopathy. In addition, combining ECG 

or cardiac MRI findings with clinical text 

information has been shown to improve patient 

risk stratification [94]. A UK Biobank study 

further reported that LLM-based prediction 

models performed on par with established 

cardiovascular risk calculators in forecasting 

major adverse cardiac events over a ten-year 

follow-up period [95]. 

One study evaluated ChatGPT's ability to 

automatically generate echocardiography 

reports and provide clinical recommendations 

based solely on echocardiography 

measurements; the model was shown to be able 

to produce cardiological reports with 85.7% 

accuracy [96]. This finding suggests that LLMs 

have the potential to reduce clinician workload 

and accelerate clinical processes by providing 

diagnostic and follow-up recommendations. 

While unimodal AI models are particularly 

effective in detecting conditions such as cardiac 

amyloidosis, ejection fraction abnormalities, 

and atrial fibrillation from 12-lead ECGs or 

medical images, their performance is 

constrained by the reliance on a single data 

modality. On the contrary, multimodal models 

can jointly process ECG signals and clinical 

text, allowing them to learn cross-modal 

patterns and generate clinically meaningful 

representations without depending on labeled 

datasets. When paired with large language 

models (LLMs) such as ChatGPT or LLaMA, 

these systems have shown superior 

performance in tasks including summarizing 
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electronic health records, generating clinical 

documentation, and supporting physician–

patient communication [97]. 

Another study emphasized that LLM 

performance can be inconsistent across 

different clinical scenarios, particularly in acute 

care settings where sensitivity is critical. It was 

also noted that the existing literature is 

primarily based on retrospective data, and 

prospective evidence based on patient 

outcomes is quite limited [98]. 

LLMs have shown notable benefits in text-

based clinical workflows. They can help with 

drafting discharge summaries and consultation 

letters, summarizing clinical guidelines, 

conducting literature searches, communicating 

with patients, and improving health literacy. In 

these areas, they can increase both efficiency 

and accessibility. However, their accuracy 

decreases in situations that require highly 

complex medical reasoning, such as the 

management of narrow-therapeutic-index 

drugs, decision-making in patients with 

multiple comorbidities, and the evaluation of 

rare diseases. A primary concern is their 

tendency to produce confident but incorrect 

statements without proper sourcing 

(hallucination), which limits their reliability. 

For this reason, LLMs should not be viewed 

as an authority replacing internal medicine 

specialists. When used appropriately, they are 

best seen as support tools that reduce workload, 

save time, and assist clinical decision-making. 

At the same time, the role of traditional text-

only LLMs is expanding with the development 

of agentic AI architectures. These systems can 

combine information from different sources, 

such as MRI/CT image analysis, laboratory 

results, and clinical data. Thus, the system is 

evolving from a structure that merely 

"generates answers" to a more active clinical 

support component capable of utilizing external 

tools and validation steps, aiming to reduce the 

risk of error. 

However, these capabilities are still 

experimental. Due to ongoing uncertainties 

regarding ethical considerations, data privacy, 

legal responsibility, and clinical accountability, 

positioning LLM-based systems in a supportive 

role, under the supervision of the expert 

clinician, rather than at the center of the 

decision-making process, is currently 

considered the safest approach. 

Conclusion 

In internal medicine, recent advances in 

artificial intelligence are redefining how 

clinicians diagnose, monitor, and manage 

disease. Across subspecialties, from cardiology 

and endocrinology to oncology and 

nephrology, AI driven tools are demonstrating 

the ability to analyze complex datasets, uncover 

hidden patterns, and support earlier, more 

accurate clinical decision making. The use of 

deep learning in imaging, laboratory testing, 

electronic health records, and predictive models 

supports a more personalized and data-driven 

approach to patient care. Though its routine 

clinical use remains in early stages. Major 

challenges, such as issues of data quality and 

interoperability, limited external validation, 

performance bias, data privacy concerns, and 

the need for transparent models that clinicians 

can trust, remain. Ethical and regulatory 

approaches must also progress to ensure these 

systems support clinical judgment and serve 

patients fairly. The progress of AI in internal 

medicine will rely on close collaboration 

among clinicians, data scientists, and health 

policy makers. Prospective, multicenter 

validation studies, transparent reporting 

standards, and human in the loop 

implementation strategies will be critical for 

realizing the full potential of AI. When 

developed and deployed responsibly, AI can 
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play a supportive role by augmenting clinical 

expertise, improving efficiency, and advancing 

the quality and precision of patient care in 

internal medicine.  
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