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ABSTRACT

Artificial intelligence (Al) is reshaping the practice of internal medicine by enhancing diagnostic precision,
optimizing clinical workflows, and supporting individualized patient care. As digital health technologies
mature, Al is increasingly integrated across multiple medical domains, offering new opportunities and
challenges for clinicians. This comprehensive review aims to provide an updated overview of the current and
emerging applications of Al in internal medicine, highlighting its contributions across major subspecialties
such as cardiology, endocrinology, nephrology, gastroenterology, hematology, and oncology. Recent literature
demonstrates that Al algorithms, particularly those based on machine learning and deep learning, have
achieved notable success in tasks such as medical imaging interpretation, pattern recognition in laboratory and
clinical data, and prediction of disease outcomes. In cardiology, Al enhances ECG and echocardiographic
analysis; in endocrinology and nephrology, it aids in early detection of diabetic and renal complications; and
in oncology and hematology, it supports diagnostic pathology and prognostication. Despite this progress,
translation into daily clinical practice remains limited due to challenges related to data quality, model
interpretability, generalizability, data safety concerns and ethical considerations. In conclusion, Al holds
significant promise to advance internal medicine by augmenting clinical decision making and promoting
precision medicine. Real-world integration will require interdisciplinary collaboration, transparent model
validation, and regulatory guidance to ensure reliability, safety, and equity. Continued clinical engagement and
responsible implementation are essential for transforming AI’s technical potential into perceptible benefits for
patient care.
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accelerating influence of artificial intelligence
(Al). The growing availability of electronic
health records (EHRs), wearable devices,
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Introduction
In recent years, the landscape of internal
medicine has begun to shift under the

imaging datasets, and other digital health
sources has supported the rapid adoption of Al-
driven methods, particularly machine learning
(ML) and natural language processing (NLP)
for diagnostic, prognostic, and therapeutic
applications across medicine [1-3]. Within
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internal medicine practice, encompassing
chronic disease management, multisystem
assessment, and complex decision making, the
promise of Al is particularly compelling. It
would be helpful by assisting in early risk
stratification, enabling more individualized
treatment choices, and supporting
overburdened clinicians. Therefore, Al tools
hold the potential to enhance both efficiency
and quality of care. For example, surveys of
internists reveal that many perceive Al as
improving diagnostic accuracy and treatment
decisions, though adoption remains uneven
across subspecialties [4]. Yet alongside this

promise lie substantial challenges. The
interpretability of many models with limited
transparency, issues of data privacy,

algorithmic bias, and workflow integration
have been repeatedly cited as significant
barriers in internal medicine settings [3,5].
Moreover, despite numerous proof-of-concept
studies identified via medical literature,
translation to real world implementation in
general internal medicine remains limited [6].
Against this backdrop, this review synthesized

the medical evidence on Al in internal
medicine. We examined the current state of
applications,  highlighted  lessons  from
deployment, and outlined emerging

opportunities as well as critical impediments to
broader adoption. The aim is to provide
internists, researchers, and policymakers with a
clear and actionable overview of how Al is
shaping the field today and how it may be
meaningfully integrated into internal medicine
practice in the coming years.

Al in Endocrinology

Diabetes remains the most extensively
studied and best-validated area of Al
applications in  endocrinology. Artificial
intelligence is now embedded across the entire
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care continuum from early risk prediction
(identifying individuals at risk of developing
diabetes) and glycemic forecasting, to closed-
loop insulin delivery systems (automated
insulin pumps), insulin dosing decision support,
integration of continuous glucose monitoring
(CGM) and wearable data, and advanced
patient  self-management  tools.  These
approaches have produced measurable
improvements in time in range, hypoglycemia
reduction, and patient self-management in
many studies [7-9].

Al applied to thyroid ultrasound and
cytopathology, especially deep learning
classifiers, can improve nodule malignancy risk
stratification and help reduce unnecessary
biopsies and surgeries. Several studies in the
literature have shown rapid growth in
ultrasound image-based models and have
suggested potential cost-effectiveness in
selected settings [10-12]. Though prospective
data were presented, multicenter validation is
still limited in this area. Beyond diabetes
mellitus and thyroid disorders, Al research in
endocrinology is still in its early stages, with
fewer studies and validated applications. Al is
increasingly used to build predictive models for
metabolic disease complications, including
cardiovascular and renal outcomes. Another
promising area is the use of algorithms to
support test ordering and result interpretation,
including optimization of endocrine test panels
and improvement of laboratory workflows.
Early efforts have applied machine learning to
pituitary and adrenal disease diagnostics as well
as to rare endocrine tumor phenotyping, but
most remain proof-of-concept or retrospective
studies. Overall, the literature shows promise
but far fewer high-quality, prospective clinical
evaluations than in diabetes [13-15].

Common methods include traditional machine
learning approaches (random forests, gradient
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boosting), deep learning  architectures
(convolutional  neural  networks, vision
transformers, and hybrid architectures for
imaging), and interpretable models designed
for clinical deployment. Data sources are
electronic health records, laboratory databases,
imaging (ultrasound), continuous glucose
monitoring and wearables, and, increasingly,
multimodal datasets combining genetics and
clinical data [13,16].

For diabetes mellitus (closed loop systems,
predictive glycemia models), there is good
evidence of clinical benefit in trial settings. For
most other endocrine applications, evidence is
often limited to retrospective cohorts, single-
center studies, or algorithmic performance
metrics (AUC, sensitivity, and specificity)
rather than robust clinical outcome trials.
Researchers repeatedly call for prospective,
multicenter, and implementation studies to
show real-world effectiveness and cost-
effectiveness [7,13,17].

Key challenges highlighted in the literature
include generalization, explanation, data
quality, validation, and clinical integration of
those studies on Al use in medicine. Models
trained on narrow populations often perform
worse when moved to different hospitals,
devices, or demographic groups. Moreover,
clinicians require interpretable outputs to build
trust and support decision-making; however,
the uninterpretability of black-box models
remains a major barrier to their adoption. In
addition, missing data, variable coding, and
pooled records limit model performance in the
reports in the literature. Regulatory approvals
exist for some diabetes mellitus devices, but
most endocrine Al tools lack prospective
regulatory-grade validation. Consequently,
clinical acceptance is limited. Integration of Al
into electronic health records and clinical
workflows, and the human factors around alerts
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and recommendations, are frequent barriers
[8,10,13].

Practical recommendations for clinicians
and researchers may include the definition of
validated problems. The adoption of Al should
focus on areas where prospective evidence
exists, such as regulatory-approved closed-loop
insulin ~ delivery  systems, and  where
performance has been validated in large
populations.  Before local  deployment,
researchers should insist on model performance
reported on external cohorts and subgroup
analyses for equity. The researchers and
clinicians should prefer interpretable models
for  decision support where possible.
Implementation studies should be planned.
They could be built in prospective monitoring
of clinical outcomes, workflow impact, patient-
reported outcomes, and cost implications.

Al in Nephrology

Artificial intelligence, including supervised,
self-supervised, and federated learning
approaches, is being actively developed across
the nephrology continuum, from early detection
and risk prediction (especially for acute kidney
injury (AKI) and chronic kidney disease (CKD)
progression), through dialysis optimization and
remote monitoring, to image-based renal
pathology and transplant biopsy interpretation.
Recent data in the literature describe rapid
growth in both methods and clinical use cases,
with the strongest clinical evidence in AKI
prediction, dialysis session optimization, and
some renal pathology image analysis tasks
[18,19]. Predicting AKI earlier than
conventional creatinine-based rules is the most
mature and visible application. Multiple ML
models, including deep learning, trained on
large electronic health record datasets, can
predict imminent AKI (hours to days ahead),
provide dynamic risk scores, and forecast in-
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hospital mortality for AKI patients. These
models improve identification of at risk
patients, enabling earlier monitoring and
intervention in retrospective and some
prospective  evaluations, but prospective
clinical outcome evidence of reduced hard
endpoints (mortality, dialysis need) remains
mixed and limited [20,21]. Al has been used to
identify undiagnosed CKD from routine
laboratory values and electronic health record
signals, to predict which patients will progress
to advanced CKD or kidney failure, and to
stratify risk for cardiovascular complications.
Recent  studies  highlighted  promising
discrimination metrics across many models but
noted heterogeneity in predictors, cohorts, and
outcome definitions, as well as a lack of
generalizable external validation. Explainable
ML approaches are being explored to increase
clinician trust [22,23]. In dialysis, artificial
intelligence is being applied to help anticipate
intradialytic hypotension, guide ultrafiltration
and treatment planning, identify access
complications early, and analyze large session
datasets to improve care quality. Several studies
demonstrated accurate prediction of session
level events and point toward precision dialysis
systems that adapt parameters in near real time,
but most work is algorithmic or retrospective;
randomized implementation trials are scarce
[19,24]. Moreover, the integration of digital
pathology and deep learning has rapidly
advanced the detection and quantification of
renal lesions, including glomerulus
identification, lesion segmentation, fibrosis
scoring, and automated lesion classification.
Published models can match or exceed
pathologists’ performance on specific tasks in
independent test sets and accelerate workflow.
Renal pathology is increasingly recognized as
one of the most promising fields for applying
image-based Al in clinical practice [25].
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Nevertheless, wider validation across centers
and consistent standards are needed before such
tools can be wused routinely. Artificial
intelligence has also been applied to predict
graft survival and acute rejection, and to
interpret transplant biopsies. Recent deep
learning studies using whole slide images report
strong performance for detecting and subtyping
rejection and for identifying features predictive
of graft loss, sometimes outperforming local
pathologists on technical metrics [25,26]. These
developments are promising for earlier and
more standardized interpretation of transplant

pathology and  for  graft  outcome
prognostication, yet prospective validation
studies and regulatory approval are still

required. Most nephrology Al studies draw on
data from electronic health records (including
laboratory values, vital signs, and medications),
dialysis machine and session logs, imaging and
whole-slide pathology, and, less frequently,
biomarkers and genomics. Methods range from
gradient boosted trees and random forests to
recurrent and transformer style deep networks
for time series and image convolutional nets for
pathology  [20,25]. Explanation  ability
techniques (Shapley Additive Explanations
[SHAP] and attention visualization) are
increasingly reported to improve
interpretability.

Al in Gastroenterology

Al models are being used in endoscopy and
lesion detection. Indeed, one of the most
advanced applications of Al in
gastroenterology is in gastrointestinal (Gl)
endoscopy. Computer-aided detection (CADe)
of polyps in colonoscopy, computer-aided
diagnosis and classification (CADX) of lesions,
including  colorectal  polyps,  Barrett’s
esophagus, early gastric cancer, and analysis of
capsule endoscopy videos are methods of Al
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use in gastroenterology practice [27]. For
example, a study noted that Al tools are
available for the entire gastrointestinal tract and
hepatobiliary system [28]. A meta-analysis
found that for the diagnosis of early gastric
cancer (EGC) using Al-based endoscopic
systems, the pooled area under the curve (AUC)
was approximately 0.96 (95% CI, 0.94-0.97),
with a sensitivity of about 86% (95% CI, 77—
92%) and specificity of about 93% (95% ClI,
89-96%) [29]. In a review of registered clinical
trials, about half of the Al studies in
gastroenterology were related to endoscopy,
most often focusing on detecting or classifying
colorectal neoplasia [30]. Capsule endoscopy
represents an ideal imaging domain for Al
applications due to the substantial video data
burden, a point emphasized in a recent review
of Al in endoscopy [31].

Beyond lesion detection, Al and ML
techniques have also been applied to predict
outcomes in hepatobiliary diseases, such as
survival after hepatocellular  carcinoma
resection [32]. It is also helpful in predicting
treatment response in inflammatory bowel
disease, for example, by identifying which
patients are most likely to benefit from biologic
therapy. [32]. Moreover, it is beneficial for
evaluating bowel preparation quality and
automatically assessing endoscopic quality
metrics [28].

Recently, Al has been applied to
hepatobiliary and pancreatic diseases, including
imaging-based approaches for liver fibrosis,
cirrhosis, hepatocellular carcinoma detection,
and pancreatic cyst classification. [33].
Researchers are increasingly testing Al tools to
assist with endoscopy workflows, including
mucosal feedback, automated quality control,
and real-time procedural guidance [28]. These
systems may also support remote monitoring in
high-risk gastroenterology and hepatology
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populations, such as patients with cirrhosis who
require regular follow up [32].

In colonoscopy, the use of Al for polyp
detection has been shown in meta-analyses of
randomized controlled trials to reduce adenoma
missing rate and increase adenoma detection
rate. One meta-analysis concluded that Al
assistance significantly reduces miss rates of
adenomas and polyps [34]. For early gastric
cancer, the systematic review reported very
strong diagnostic metrics (AUC about 0.96) for
Al in early gastric cancer diagnosis via
endoscopy [29]. Reports in literature conclude
that Al currently outperforms or matches expert
human performance in specific image detection
and classification tasks in the GI system [29]. A
recent web-based study in the Asia-Pacific
region found high acceptance of Al in
gastrointestinal endoscopy, with 83% of
respondents accepting computer-aided
detection and 78.8% accepting computer-aided
diagnosis and classification among
gastroenterologists and gastrointestinal
surgeons. [35].

Despite  encouraging advances, many
reviews highlight significant limitations. Key
challenges include study bias, the black-box
nature of models, data heterogeneity, and
ethical concerns. Models developed in a single
center or within narrow populations often
perform less reliably when applied elsewhere,
for example, across different devices, patient
groups, or imaging modalities
[36]. Additionally, clinicians may hesitate to
trust Al recommendations without a detailed
explanation [33]. Differences in imaging
protocols, endoscopic equipment, video
quality, and documentation practices often
prevent effective data pooling and model
development. Ethical questions also arise,
particularly around who is responsible when
Al-assisted systems contribute to diagnostic
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errors in endoscopy. In addition, data privacy,
intellectual property, and cybersecurity remain
prominent concerns [32,33]. Detection rates
rise in trials; however, real-world outcomes,
such as reductions in interval cancers and cost
savings, are less well established. Also,
integration with endoscopy suites and clinician
workflows is nontrivial.

In evaluating Al tools for endoscopy,
clinicians, researchers, and administrators
involved in gastrointestinal practice should give
priority to externally validated, multicenter
studies with human comparators and
prospective trial data. Moreover, they should
ensure that the device and Al tool are validated
for the specific endoscopy system, patient
population, and clinical workflow at the
institution. Researchers should prefer tools that
provide interpretable outputs or allow human in
the loop decision making rather than fully
autonomous action. Physicians should remain
vigilant for unintended consequences, such as
higher false-positive rates, longer procedure
times, and alarm fatigue during endoscopy.
Outside of endoscopy, including in IBD,
hepatology, and pancreatic disease, Al should
be considered an adjunctive, exploratory
technology at present, since the deployment
should be accompanied by monitoring of
clinical outcomes and cost outcomes.

Al in Hematology

Al applications in hematology span
automated peripheral blood and bone marrow
morphology, flow cytometry analysis, digital
pathology (whole slide images), genomics and
molecular profiling, clinical risk prediction and
prognostication, and operational or laboratory
automation. Recent studies have documented
the rapid expansion of deep learning and other
machine learning approaches across these
domains, emphasizing that image-rich tasks,
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such as blood smears, whole-slide imaging, and
flow cytometry plots, represent the most mature
applications to date [37,38]. Convolutional
neural networks and related image recognition
pipelines can detect, classify, and count red
blood cells, white blood cells, and platelets with
accuracy approaching experienced
technologists for many tasks, such as WBC
differential and schistocyte detection. Large
annotated datasets and smartphone microscopy
approaches have accelerated model training and
potential point of care use [39,40]. Moreover,
deep learning is being applied to whole slide
bone marrow images for slide level
representations, blast quantification, and
automated detection of dysplasia or leukemia
features. Early studies showed good slide level
performance and promise to reduce pathologist
workload, but multicenter standardization
remains necessary [41]. Al methods have also
shown utility in flow cytometry. The technique
generates high-dimensional data that are well-
suited to machine learning (ML). Recent cross-
institutional ~ frameworks and  reviews
demonstrate that ML can standardize gating,
detect abnormal cell populations, and classify
conditions such as acute leukemia with very
high AUC and accuracy when trained on well-
annotated, multisite datasets. Guidance papers
now propose risk tiers, validation and
revalidation workflows, and governance for
clinical flow cytometry ML [42,43].

Al applied to hematoxylin and eosin (H&E)
and immunofluorescent staining can assist
diagnosis by enabling lymphoma subtyping on
biopsies, quantitative assessment of cellularity
and fibrosis, and biomarker inference. These
image based models can sometimes perform as
well as, or even better than, human experts in
specific diagnostic tasks. These image based
models may match or exceed human
performance on narrow tasks and are attractive
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for workload triage and objective scoring;
however, performance is sensitive to stain and
scanner variation and requires robust external
validation [44].

ML and deep learning are also used to
classify genomic signatures such as subtypes of
AML or ALL, to predict prognosis from
mutation panels and gene expression, and to aid
variant interpretation and therapy matching in
hematology practice. Multimodal models
combining molecular and clinical data show
promise for personalized prognostication and
treatment selection, but many are still
retrospective and need clinical trial testing [37].
Al is also beneficial for prognosis prediction,
risk stratification, and clinical decision making
as a supportive tool. Models have been
developed to predict outcomes such as relapse,
response to therapy, post-transplant graft
survival, and the risk of complications,
including infection and thrombosis. Several
studies reported good discrimination, but the
literature often lacks prospective trials showing
that model-guided decisions improve patient
level outcomes. Implementation studies remain
limited [37,45]. In addition, Al is used to triage
or prioritize slides for review, reduce false
positives, automate cell counts (e.g., hemogram
analyzers with onboard image analysis), and
enable near-patient testing using finger-prick
analyzers and smartphone-based microscopy
[39,46]. These tools can increase throughput
and reduce human workload when validated
appropriately.

Prospective multicenter studies that test
whether  Al-guided  workflows improve
meaningful patient outcomes (survival, relapse
rates, transfusion needs) are still needed.
Standardized benchmarks and external datasets
for smear, marrow, and flow cytometry tasks
are required to compare models fairly.
Multimodal models that integrate imaging,
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flow cytometry, genomic, and clinical time-
series data could enhance precision
prognostication and therapy selection.

Al in Cardiology

Artificial  intelligence  applications in
cardiology have progressed considerably,
especially in domains supported by large, well-
annotated datasets such as electrocardiography
(ECG), cardiovascular imaging, device
telemetry, and electronic health records
(EHRs). Across those domains, deep learning,
especially  convolutional —and  recurrent
architectures, gradient boosted trees, and
multimodal models, are the common
approaches. Recent literature highlights the
rapid development of technically strong
models, with a smaller but growing body of
prospective  validation  studies, clinical
implementation research, and regulatory
approvals [47-49]. One of the most significant
areas is the detection and classification of
cardiac arrhythmias. Deep learning models
applied to both single-lead and 12-lead ECG
recordings have shown high diagnostic
accuracy, often matching or even exceeding
cardiologists on benchmark datasets. [47,50].
These models power consumer and clinical
devices (wearables, ambulatory monitors) and
large-scale screening tools. Al can also infer
structural or future risk signals, such as
detection of reduced ejection fraction,
prediction of future atrial fibrillation, or 10 year
cardiovascular risk from ECG traces that appear
normal to clinicians [51]. Such predictive ECG
Al tools are now being trialed at scale in health
systems. Al plays a growing role in cardiac
imaging. In echocardiography, automated view
detection, chamber quantification, and even
near complete interpretation pipelines are
showing strong cross-site performance in large
multicenter studies. Al can accelerate image
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interpretation, reduce interobserver variability,
and enable screening in point of care contexts
[48,52]. Prospective evaluations of Al
integration into clinical workflows are
increasingly. In coronary angiography via
computerized tomography, Al assists coronary
plague quantification and supports non-
invasive ischemia assessments, such as CT
based fractional flow reserve models, to triage
patients more effectively [53]. Moreover, Al
reduces segmentation and/or analysis time,
standardizes tissue characterization, and is
being explored for prognostication from
imaging phenotypes, addressing cardiac
magnetic resonance imaging (MRI) workforce
bottlenecks in cardiac MRI studies. High
impact work shows strong diagnostic and/or
predictive performance in cardiac MRI tasks
[54,55]. Al and ML models are widely applied
to predict readmission, mortality, pump failure,
and to personalize therapy (device and titration)
in patients with heart failure. Systematic
reviews show many promising models for 30-
day readmission and mortality prediction, but
variable methodological quality, frequent lack
of external validation, and limited proof that
model-guided care changes hard outcomes
[56,57]. In interventional cardiology, Al is used
for procedural planning (CT-derived planning
for  percutaneous coronary intervention,
coronary arterial bypass grafting), intra-
procedural image guidance, and to analyze
catheterization laboratory data for quality
improvement [53]. Despite intense research
activity, clinical adoption requires strong
integration into catheter laboratory workflows
and regulatory clarity. A growing number of
cardiovascular Al tools have obtained Food and
Drug Administration (FDA) or other regulatory
clearance for specific clinical uses (ECG-based
risk tools, automated image quantification,
device diagnostics). Analyses of approved
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devices show diversity in applications but also
wide variation in the level of publicly available
validation evidence; therefore, clinicians
should appraise each tool’s external validation
and intended wuse [49,58]. Larger and
multicenter randomized or implementation
studies that test whether Al-guided actions
change clinical outcomes, including mortality,
readmissions, and major adverse cardiac
events, are required. Standards for transparent
reporting, external validation, and real-world
performance monitoring are also necessary.
There is a growing demand for explainable Al
approaches aligned with clinical workflows to
support adoption and safe implementation.

Al in Oncology

Deep learning models have substantially
improved automated detection, segmentation,
and characterization of lesions on CT and/or
MRI and mammography; several tools are now
approved for clinical use and have shown value
in triage and workflow prioritization [59,60].
These image tasks are among the most mature
Al applications in cancer care. Al is also
applied to whole slide images to identify
cancer, grading tumors, quantifying immune
and/or inflammatory infiltrates, and even
suggesting  molecular  correlates  from
hematoxylin-eosin stained slides alone in some
settings [61]. Pathology is a rapidly advancing
domain where Al is improving diagnostic
consistency and unlocking new biomarkers.
Machine learning methods that integrate
genomics, radiomics, and clinical data are being
used to derive predictive biomarkers, such as
identifying which patients will respond to
immunotherapy or targeted therapies, and to
stratify patients for precision treatment [62].
Results are promising, but most studies are
retrospective and still need prospective,
practice-changing validation. Al is also being
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used across the drug development pipeline;
target identification, virtual screening, lead
optimization, and to optimize trial design and
patient selection, shortening timelines and
prioritizing candidates for testing [63]. Several
industry—AlI collaborations illustrate this trend.
Meta-analyses and systematic reviews show
very high AUCs for specific detection and
classification problems, including some cancer
image classification tasks [64,65]. Al often
matches or exceeds human readers on
benchmark datasets for narrowly defined
problems. It reduces reading time in radiology
and pathology, flags high risk laboratory test
results for rapid review, and reduces
interobserver variability on scoring tasks [60].
Multimodal Al systems can detect subtle
imaging or histologic patterns that correlate
with genomic alterations and clinical outcomes,
thereby opening new avenues for developing
low cost surrogate biomarkers in cancer
detection [61].

In the future, prospective, multicenter,
randomized clinical trials are needed to
determine  whether  Al-guided decisions

improve patient outcomes rather than merely
enhance diagnostic accuracy. These trials
should be integrated with clinical workflows
and governance; clear user interfaces, clinical
pathways for action, and monitoring systems
for performance drift and safety.

Large Language Models in Internal
Medicine

Large Language Models (LLMS) trained on
large datasets interpret information from EHR
records, clinical notes, and guidelines, and
deliver strong results on tasks such as clinical
summarization, diagnostic reasoning, and
treatment guideline extraction. The most well-
known of these are ChatGPT [66] developed by
OpenAl, Copilot [67] by Microsoft, Gemini
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[68] by Google, and LIaMA [69] by Meta. The
field of internal medicine, where text-dense
data such as clinical notes, discharge
summaries, guidelines, drug labels, research
articles, and patient messages are abundant,
naturally represents the ideal environment for
LLMs to operate most effectively.

LLMs are trained mainly on uncontrolled
data available online, and the responses
provided depend on this data. Therefore, the
biggest challenges to the safe use of LLMSs in
medicine are data bias [70], lack of
transparency, data privacy risks [71], and the
production of erroneous responses, known as
hallucinations. These problems can lead to
serious diagnostic errors in medical practice,
and therefore, models should only be used after
undergoing rigorous clinical validation.

Systematic reviews published in recent years
have shown that LLMSs are promising in many
areas such as clinical documentation, rapid
access to information, decision support and
patient communication, but can be inaccurate
and potentially harmful when used without
supervision in real-life conditions [72].
Fine-tuning with domain-specific clinical data
plays a key role in increasing model reliability.
Instead of merely improving general language
fluency, this process helps the model produce
accurate and consistent outputs that align with
the clinical context in which it is used [73]. In
addition, the Retrieval-Augmented Generation
(RAG) framework contributes to transparency
and traceability by allowing the model to
formulate responses based only on recent and
validated information sources [74].

Additionally, techniques such as federated
learning [75] and differential privacy enable
patient data to be processed locally without
leaving the institutional environment; however,
these methods still cannot provide absolute
privacy. For this reason, ensuring the safe and
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reliable use of LLMs in clinical practice
requires more than technical safeguards alone.
It also depends on the establishment of
continuous performance monitoring, regulatory
frameworks, and robust ethical oversight
mechanisms.

Endocrinology

In a study of patients with type 2 diabetes
mellitus, 31% of endocrinologists chose
metformin for treatment, while 12% preferred
the GPT 4 model. However, GPT 4 was more
conservative than endocrinologists, preferring
metformin less in patients with kidney
dysfunction or a history of gastrointestinal
distress [76].

Mondal and colleagues compared physicians
and the GPT-4 model in type 2 diabetes
treatment planning and found that physicians
ordered fewer missing medications, while
GPT-4  prescribed  fewer  unnecessary
medications. However, they identified safety
issues in 16% of treatment plans created with
GPT-4[77].

Another study examined the consistency of
GPT-4 in thyroid nodule biopsy decisions. The
GPT-4 response was evaluated using different
types of prompts, including those aimed at
reducing unnecessary biopsies, those based on
ATA guidelines, and those based on TI-RADS
guidelines. They demonstrated that GPT-4
biopsy = recommendation  rates  varied
significantly even for the same clinical
scenario, depending on the prompt format used
[78]. ThyGPT is a multimodal artificial
intelligence  model based on LLaMA-3,
developed to classify thyroid nodules by
evaluating ultrasound images, USG reports, and
thyroid guidelines together. The model
functions as a clinical "copilot™ that can interact
with radiologists in natural language to explain
diagnostic rationale, thus providing both
decision support and interpretability. The study
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demonstrated that ThyGPT significantly
increases radiologists' diagnostic accuracy,
reduces unnecessary biopsies, and does so
without increasing the risk of missed cancer
[79].

LLMs demonstrate strong performance in
providing patient information and clear answers
to frequently asked questions; in areas such as
diabetes and thyroid, the quality of
communication and accuracy of explanations
often approaches, and in some cases even
surpasses, physician levels. However, the
picture is more complex for clinical decision
support and treatment planning, and they
should be viewed as "helpful tools" for
treatment planning and drug regulation, which
still face experimental and safety concerns.

Nephrology
Nephrology, where patient education, diet,
and fluid management, and informed

medication use are crucial in conditions such as
chronic kidney disease, has become a field
where LLMs can be effectively used. LLM-
based chatbots can help patients better
understand complex treatment regimens, such
as dialysis schedules, medication adjustments,
and dietary restrictions. Automated
documentation and report generation through
EHR integration may also reduce physician
workload. Moreover, LLM-powered
monitoring systems can support early detection
and timely alerting for high-risk clinical
scenarios such as acute kidney injury (AKI)
[80].

A systematic review also evaluated the
application of LLMs in four key areas in
nephrology; patient education, workflow
optimization, dietary guidance, and laboratory
data analysis. GPT-4 and other models have
demonstrated high accuracy in tasks such as
patient information and data interpretation [81].
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Gastroenterology

Language models are quite helpful in
gastroenterology, particularly for patient
education in patients with IBD and chronic liver
disease, colonoscopy preparation instructions,
diagnostic algorithms, guideline summaries,
literature reviews, and scientific manuscript
preparation [82].

LLMs have been able to provide mostly
guideline-compliant answers to questions about
many diseases, including IBD and IBS [83], H.
pylori [84], gastroesophageal reflux disease
(GERD) [85], colonoscopy and colorectal
cancer [86], pancreatic cancer [87], and liver
diseases [88].

Oncology and Hematology

Oncology and hematology are among the
fields with the heaviest information load due to
complex  guidelines, rapidly  changing
treatments, and numerous clinical trials. Studies
are being conducted on large language models
for clinical question-answering and second-
opinion support. LLMs can provide literature-
based answers to topics such as staging,
treatment plans, and follow-up protocols [89].
Clinical decision-making in oncology requires
integrating multiple data types (e.g., text and
images). One study developed an autonomous
Al agent that integrated GPT-4 with imaging,
pathology, and genomic analysis tools to test
the accuracy of personalized clinical decisions
in oncology. The model achieved 87.2% correct
treatment and diagnostic decisions on 20
clinical cases evaluated by experts [90].

Carl et al. evaluated the use of large
language models in oncology for medical
information, diagnosis, and recommendations.
Although LLMs show high potential, they
require further validation studies before clinical
application due to differences in accuracy,
hallucinations, and lack of standard pathology
[91].
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Cardiology

Brown et al. [92] demonstrated that large
language models can be used to integrate social
risk factors into predictive tools for estimating
30-day readmission after acute myocardial
infarction. Similarly, Dewaswala et al. [93]
noted that LLMs can interpret cardiac MRI
reports to help the identification of hypertrophic
cardiomyopathy. In addition, combining ECG
or cardiac MRI findings with clinical text
information has been shown to improve patient
risk stratification [94]. A UK Biobank study
further reported that LLM-based prediction
models performed on par with established
cardiovascular risk calculators in forecasting
major adverse cardiac events over a ten-year
follow-up period [95].

One study evaluated ChatGPT's ability to
automatically  generate  echocardiography
reports and provide clinical recommendations
based solely on echocardiography
measurements; the model was shown to be able
to produce cardiological reports with 85.7%
accuracy [96]. This finding suggests that LLMs
have the potential to reduce clinician workload
and accelerate clinical processes by providing
diagnostic and follow-up recommendations.

While unimodal Al models are particularly
effective in detecting conditions such as cardiac
amyloidosis, ejection fraction abnormalities,
and atrial fibrillation from 12-lead ECGs or
medical images, their performance is
constrained by the reliance on a single data
modality. On the contrary, multimodal models
can jointly process ECG signals and clinical
text, allowing them to learn cross-modal
patterns and generate clinically meaningful
representations without depending on labeled
datasets. When paired with large language
models (LLMs) such as ChatGPT or LLaMA,
these systems have shown  superior
performance in tasks including summarizing
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electronic health records, generating clinical
documentation, and supporting physician—
patient communication [97].

Another study emphasized that LLM
performance can be inconsistent across
different clinical scenarios, particularly in acute
care settings where sensitivity is critical. It was
also noted that the existing literature is
primarily based on retrospective data, and
prospective evidence based on patient
outcomes is quite limited [98].

LLMs have shown notable benefits in text-
based clinical workflows. They can help with
drafting discharge summaries and consultation
letters, summarizing clinical guidelines,
conducting literature searches, communicating
with patients, and improving health literacy. In
these areas, they can increase both efficiency
and accessibility. However, their accuracy
decreases in situations that require highly
complex medical reasoning, such as the
management  of  narrow-therapeutic-index
drugs, decision-making in patients with
multiple comorbidities, and the evaluation of
rare diseases. A primary concern is their
tendency to produce confident but incorrect
statements  without proper sourcing
(hallucination), which limits their reliability.

For this reason, LLMs should not be viewed
as an authority replacing internal medicine
specialists. When used appropriately, they are
best seen as support tools that reduce workload,
save time, and assist clinical decision-making.
At the same time, the role of traditional text-
only LLMs is expanding with the development
of agentic Al architectures. These systems can
combine information from different sources,
such as MRI/CT image analysis, laboratory
results, and clinical data. Thus, the system is
evolving from a structure that merely
"generates answers" to a more active clinical
support component capable of utilizing external
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tools and validation steps, aiming to reduce the
risk of error.

However, these capabilities are still
experimental. Due to ongoing uncertainties
regarding ethical considerations, data privacy,
legal responsibility, and clinical accountability,
positioning LLM-based systems in a supportive
role, under the supervision of the expert
clinician, rather than at the center of the
decision-making  process, is  currently
considered the safest approach.

Conclusion

In internal medicine, recent advances in
artificial intelligence are redefining how
clinicians diagnose, monitor, and manage
disease. Across subspecialties, from cardiology
and endocrinology to oncology and
nephrology, Al driven tools are demonstrating
the ability to analyze complex datasets, uncover
hidden patterns, and support earlier, more
accurate clinical decision making. The use of
deep learning in imaging, laboratory testing,
electronic health records, and predictive models
supports a more personalized and data-driven
approach to patient care. Though its routine
clinical use remains in early stages. Major
challenges, such as issues of data quality and
interoperability, limited external validation,
performance bias, data privacy concerns, and
the need for transparent models that clinicians
can trust, remain. Ethical and regulatory
approaches must also progress to ensure these
systems support clinical judgment and serve
patients fairly. The progress of Al in internal
medicine will rely on close collaboration
among clinicians, data scientists, and health

policy makers. Prospective, multicenter
validation  studies, transparent reporting
standards, and human in the loop

implementation strategies will be critical for
realizing the full potential of Al When
developed and deployed responsibly, Al can
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play a supportive role by augmenting clinical
expertise, improving efficiency, and advancing
the quality and precision of patient care in
internal medicine.
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