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A BST R AC T   

 

Brain computer interfaces (BCI) is a tool that can make user requests to computerized systems by directly 

processing brain signals. In order to perform the procedures to be performed, brain signals must be classified. 

For this purpose, many classification algorithms have been tried with machine learning. The purpose of this 

study is to talk about both the type of brain signals used in the brain computer interface and the machine 

learning techniques used in the classification of these signals. In addition, summary information about the 

classification methods used in brain computer interface control applications in recent years are given in a table. 
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Introduction 

The brain computer interface (BCI) is the 

system that transforms, develops a system that 

measures central nervous system (CNS) 

activity into an artificial output and replaces the 

ongoing interactions between CNS and the 

external or internal environment. More simply, 

a BCI can be defined as a system that converts 

brain signals into new types of output [1]. The 

aim is to help people with serious disabilities to 

live their lives as regularly as possible. Some of 

these disabilities are classified as neurological 

neuromuscular disorders [2]. BCI helps 

neurological patients in daily life, but is 

generally used for purposes such as: medical, 

neuro-economic and smart environment, 

neuromarketing and advertising, education and 

self-regulation, games and entertainment, and 

security and authentication [3]. 

Many operations need to be performed to 

perform a command with the brain computer 

interface system. These processes will be 

mentioned below as articles. But in summary, 

the working principle of a brain computer 

interface is as follows in the block diagram in 

Figure 1: The signals received from the cortex 

by invasive or non-invasive methods are passed 

through pretreatments such as amplification 

and filtering. The signals are then subjected to 

feature extraction in order to reduce and convert 

them to data sufficient for classification. The 

data obtained from here are directed to the 

classifier according to the classification method 

whether it is trained or uneducated. In order to 

realize control in brain computer interfaces, the 

most accurate classification with the most 

accurate data is done by classification methods 

within the scope of machine learning. The 

purpose of this study is to examine the machine 
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learning methods used to classify the EEG 

signal types used in brain computer interface 

control applications in the last 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal acquisition 

The first thing to do in brain computer 

interfaces is to obtain brain signals. Many 

methods are used for this. These methods can 

be divided into two groups as generally 

invasive and non-invasive. Examples of 

invasive methods are ECoG, microelectrode 

arrays, while non-invasive methods are EEG, 

fMRI, fNIRS, MEG. In Table 1, there are signal 

acquisition methods used in brain computer 

interface technologies [2], [4]. 

EEG, which is one of the signal acquisition 

methods, is the most used method in brain 

computer interfaces due to its features such that 

it contains the least risks and difficulties during 

application due to its non-invasiveness, being 

more economical and portable than other 

methods. Therefore, this study focuses only on 

EEG. A graphic is cited from the work cited in 

Figure 2 [5]. 

Electroencephalography is the process of 

measuring and recording the postsynaptic 

potentials resulting from ionic activities 

between neurons via electrodes over the scalp 

[5,6]. EEG is a type of biopotential amplifier 

that transfers    the   signal received through the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 electrodes to the system output by subjecting it 

to amplification and filtering [7]. To perform 

these operations, as shown in the EEG block 

diagram in Figure 3, the signals received 

through the electrodes are amplified with the 

operational amplifier and filtered on the 

frequency axis, passed through the last  

amplifier, converted to digital and displayed for 

analysis according to the new function or 

directed to the new function. 

Electrodes are placed on the scalp according to 

certain standards. The most common and 

traditional of these standards is the 10-20 

electrode placement system designed by Jasper 

in 1958. In this form of settlement, the head is 

marked by four standard points. "Nasion", nose; 

"inion", the back of the head; left and right 

"Preauricular" means ear, dividing between 

"Nasion" and "inion" to be 10-20-20-20 and 

10%, electrodes placed. Other electrodes are 

placed with these electrodes to form a circle [8]. 

Figure 4 shows the location points of the 10-20 

electrode system. 

                        
Figure 1. Brain computer interface block diagram. 
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  Table 1. Signal acquisition methods used in brain computer interface technologies. 

Signal Acquisation Method 
Signal 

Source Type 

Invasive/Non-

Invasive 

Spatial 

Resolution 

Temporal 

Resolution 
Portability 

Electroencephalography (EEG) Electrical Non-invasive ∼10 mm ∼0.001 s Portable 

Electrocorticography (ECoG) Electrical Semi-invasive ∼1 mm ∼0.003 s Portable 

Magnetoencephalography (MEG) Magnetic Non-invasive ∼5 mm ∼0.05 s Non-portable 

Positron emission tomography (PET) Metabolic Non-invasive ∼1 mm ∼0.2 s Non-portable 

single photon emission computed 

tomography (SPECT or SPET) 
Metabolic Non-invasive ∼1 cm 

∼10 s–30 

min 
Non-portable 

Functional magnetic resonance imaging 

(fMRI), 
Metabolic Non-invasive ∼1 mm ∼1 s Non-portable 

Optical imaging (functional Near InfraRed 

(fNIR)) 
Metabolic Non-invasive ∼2 cm ∼1 s Portable 

Intracortical Neuron Recording Electrical invasive ∼0.1 mm ∼0.003 s Portable 

 

 
Figure 1. Usage rates of signal acquisition methods in the literature. 

 

 
                   Figure 2. EEG block diagram. 
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Figure 3. 10-20 elektrot sisteminin yerleşim 

noktaları [9]. 

 

In the use of EEG systems, a conductive gel or 

paste should be applied to bridge the gap 

between the scalp and the electrode and reduce 

the electrode impedance. However, with the 

development of dry electrodes, it eliminates the 

need for conductive gel or paste application, 

thereby reducing the electrode application time, 

allowing users to record EEGs for wired and 

wet electrode systems in impractical situations 

[10]. It has even been argued that EEG data 

recorded from a wireless dry electrode system 

can replace EEG data recorded with gel 

electrodes from a conventional system [11]. 

An EEG system should display a maximum of 

6 µVpp input noise to detect µV level EEG 

signals. This nominal peak-to-peak noise can be 

converted to average square root (rms) noise, 

resulting in an integrated noise of 0.91 µVrms. 

As a result, state-of-the-art bioamplifiers target 

a <1 µVrms noise for the input, usually 0.5-100 

Hz bandwidth. Also, 1 / f noises are typically 

reduced by dynamic circuit techniques [12]. 

Signals are filtered and amplified between these 

limits. 

Signal processing 

Since the ionic current is formed inside the 

brain, it is measured in the scalp, and layers 

between the cortex and the electrodes, such as 

the skull, reduce the Signal-to-Noise Ratio 

(SNR) by approximately 5%, which represents 

the relationship of the original brain signals to 

the measured EEG signals [13]. EEG 

recordings are often negatively affected by 

noise with different artifacts. Artifacts in the 

EEG recording are various species from 

different sources. Artifacts in EEG can 

originate from internal and external sources and 

mix noise into recordings in both temporal and 

spectral areas with broad frequency bands. 

Internal artifacts result from the patient's 

physiological activities (eg ECG, EMG / 

muscle artifacts, EOG) and movement. 

External artifacts are environmental 

interference, recording devices, electrode pop-

up and cable motion.  

In addition, some artifacts appear as regular 

periodic events, such as ECG or pulse (regular 

/ periodic), while others may be extremely 

irregular. In order to increase the Signal-to-

Noise Ratio (SNR), operations that will clear 

the signal from artifacts should be done. 

Cleaning the artifact involves canceling or 

correcting the artifacts without disrupting the 

corresponding signal. This is done primarily in 

two ways: filtering and regression, or 

separation / separation of EEG data into other 

fields. With regression analysis, Independent 

Component Analysis (ICA), Principal 

Component Analysis (PCA) or Morphological 

Component Analysis (MCA), Blind Source 

Separation, Wavelet Transform, Empirical 

Mode Separation, Adaptive Filtering or their 

hybrid use are used to clear the signal from 

artifacts [14]. 
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Feature extraction 

Feature extraction in brain computer interfaces 

means identifying information in domains other 

than brain signals that are free from noise. 

These properties can be signal amplitude, signal 

mean, kurtosis, variance in the time domain as 

well as Fourier transform and mean frequency 

in the frequency domain. Also, a feature that 

can be valid for both domains is the information 

extracted from the wavelet transform [15].  

The result appears to vary significantly from 

feature to feature. Feature selection provides 

less data and hence the classification system 

becomes less complex and increases the 

calculation of machine learning algorithms 

[16]. That is, it is important in terms of cost, 

working time and performance of the system 

whether or not to use which features for 

classification in feature selection [17]. 

Feature selection is used not only to achieve the 

smaller size of the feature matrix for 

classification, but also to select a corresponding 

subset of all available features that throw out 

irrelevant features from the matrix, which can 

reduce noise. Some of the feature selection 

methods used for this feature reduction are: 

Principal Component Analysis, Linear 

Discriminant Analysis, Factor Analysis, Multi 

Dimensional Scaling, Isometric Feature 

Mapping, Complex Band Power, Common 

Spatial Patterns [18]. 

 

Classification 

A classification is made according to the 

control application using the feature matrix 

obtained from the appropriate feature selection 

methods. Classification techniques are used to 

identify different brain signals produced by the 

user. These identified signals are then 

converted into control commands for 

application interface purposes [19]. 

Classification methods can be divided into two 

as supervised and unsupervised. Supervised 

classification is a traditional classifier where 

weights of optimum values are applied to the 

predictive states as supervised labels. 

It is clear that the classification techniques 

based on supervised learning are largely 

preferred in the literature compared to those 

based on unsupervised learning. Unattended 

techniques are mainly used for feature 

selection. However, unsupervised techniques 

such as Gaussian mix models have been used 

for EEG classification problems other than MI 

EEG processing, and may possibly be applied 

to MI EEG in future studies [20]. Various 

machine learning algorithms have been used as 

emotion classifiers such as support vector 

machine (SVM), K-nearest neighbors (K-NN), 

linear separation analysis (LDA), random 

forest, Naïve Bayes (NB) and Artificial Neural 

Network (NB). Therefore, in general, the 

choice of which classification algorithm can be 

used when designing a BCI largely depends on 

both the type of encoded brain signal and the 

type of application being controlled [21]. 

Figure 5 shows a diagram describing the 

estimates made by supervised classification 

method. 

The unsupervised classification is the classifier 

where an estimate is added to the system to 

determine possible target characters and train 

the classifier. For example, Kindermans et al. 

They proposed a method that uses expectation 

maximization (EM) to train the system during 

an unattended free writing session. During use, 

the subject selects characters for a target word 

or phrase as in the traditional system. After each 

election, the classifier tries to retrain himself 

using an iterative process. First, EEG signals 

are classified according to a random initial 

system configuration. Then, looking at these 

classifications as real tags, system parameters 

are optimized as in a   training    session. Using  
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these parameters, EEG signals are reclassified 

and change alternately until the process gets 

close to a single configuration. This method 

depends on the initial configuration and may 

result in local optima that does not classify the 

signals correctly. In this study, the problem was 

solved by creating multiple initial 

configurations and running EM separately for 

each. The result with higher log probability will 

be selected as the true classifier [23],[24].  

In recent years, classifiers have focused on 

identifying and designing classification 

methods that are compatible with the 

characteristics of EEG-based BCIs. In 

particular, topics such as low signal / noise ratio 

of EEG signals, which are the main challenges 

faced by classification methods for BCI, not 

being stationary over time, calibrating the 

classifiers with available training data of users' 

EEG signals, and eliminating overall low 

reliability and performance of existing BCIs. 

Adaptive classifiers have been developed in 

online applications to track changes in EEG 

features whose parameters are incrementally 

updated over time, i.e. to cope with EEG 

stability. Adaptive classifiers are also used to 

deal with limited training data by learning 

online, so less offline training data is required. 

Transfer learning techniques aim to transfer 

properties or classifiers from a single area. For 

this reason, they aim to address the non-

stationary and limited educational data within 

the subjects by completing a small number of  

 

 

 

 

 

 

 

 

 

educational data that can be obtained with the 

data transferred from other fields. Finally, to 

compensate for the low EEG signal-to-noise 

ratio and poor reliability of existing BCIs, new 

methods for processing and classifying signals 

in one step were combined, combining feature 

extraction, feature selection, and classification. 

This was accomplished using matrix (especially 

Riemann methods) and tensor classifiers, as 

well as deep learning. The additional methods 

explored specifically aimed at learning with 

limited amounts of data and dealing with 

multiple class problems [25]. 

 

The types of EEG signal classified used in 

BCI 

The purpose of this study is to investigate which 

classification method is widely preferred in 

EEG signal types used practically in brain 

computer interfaces. For this purpose, this 

section describes what type of EEG signals are 

used in BCI in practice. 

In brain computer interface systems, control 

application is done by solving the meaning of 

thought. For this, it is necessary to detect and 

classify a brain signal pattern or the response 

expected from the brain for a specific task. EEG 

based BBA systems that can be used in practice 

are named according to the type of EEG signal 

used. The brain signals related to the event used 

in the brain computer interfaces in practice are: 

P300 signals resulting from the acquisition of 

potentials, steady state visual evoked potentials 

 

Figure 4. A diagram describing the estimates made by supervised classification method [22]. 
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and slow cortical potentials. The mental 

strategy that needs to be developed for these 

potentials to arise is to be focused on a certain 

stimulus. Cortical oscillations, on the other 

hand, are sensorimotor rhythms obtained from 

the sensory motor cortex of the brain, for 

example, with the imagination of a limb 

movement. For this reason, his mental strategy 

has been named as an engine dream [26]. 

BCI is based on control signals received 

directly from the brain. Some of these signals 

are relatively easy to remove and some are 

difficult and require some extra pretreatment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These control signals can be divided into three 

categories: Excited signals, Spontaneous 

signals and Hybrid signals [2]. It is showed in 

Table 2. We concentrated on the 4 most 

commonly used EEG signal types in practice 

among the 3 categories mentioned in this study: 

A Sensori Motor Rhythms (μ and β rhythms) 

based BBA systems. K Slow Cortical Potential 

(YKP) based BBA systems. 300 P300 Signal 

based BBA systems. Steady State Visual 

Evoked Potential based BBA systems. Table 3 

contains summary information compiled from 

studies related to this subject. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Mental control signals [2]. 
 

MENTAL CONTROL SIGNALS 

EVOKED SPONTANEUS HYBRID 

SSEP 

signals are brain 

signals that are 

generated when the 

subject 

perceives periodic 

stimulus such as 

flickering image, 

modulated sound, 

and even when the 

subject feel some 

vibrations 

P300 

It is an EEG 

signal that 

appears after 

almost 300 ms 

when the 

subject is 

exposed to 

infrequent or 

surprising task. 

Motor and 

Sensorymotor 

Rhythms 

are those 

rhythms related 

to 

motor actions 

such as moving 

arms. These 

rhythms are 

coming from 

over the motor 

cortex with 

frequency bands 

located at μ 

(≃8–13 Hz) 

and β (≃13–30 

Hz). The 

amplitude of 

these rhythms 

could be 

controlled by 

the subject. 

SCP 

(Slow Cortical 

Potentials) 

 is an EEG 

signal that 

belongs to a 

frequency 

below 1 Hz. It 

is a low 

frequency 

potential 

detected in the 

frontal and 

central parts of 

the cortex; it is 

also the results 

of the 

depolarization 

level shifts in 

the upper 

cortical 

dendrites. 

Non Motor 

Cognitive Tasks 

Non-motor 

cognitive tasks 

mean that 

cognitive tasks 

are used to 

drive the BCI. 

Many of the 

tasks could be 

performed such 

as music 

imagination, 

visual counting, 

mental rotation, 

and 

mathematical 

computation 

Hybrid 

signals mean 

that a 

combination 

of brain 

generated 

signals 

are used for 

control. 

Therefore, 

instead of 

only one type 

of signals is 

measured and 

used in the 

BCI system, 

a hybrid of 

signals are 

utilized. 

The main 

purpose 

behind using 

two or more 

types of brain 

signals as 

input to a 

BCI system 

is the 

reliability and 

to avoid the 

disadvantages 

of 

each type of 

signals. 
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     Table 3. Information from some studies on brain computer interface in recent years 
 

Source EEG 

Signal 

Types 

Classification 

Methods 

Application Accuracy Subject Type Preprocessing Feature 

Extraction 

Method 

[27]  P300 PCA P300-based text editor 

for Android-based 

devices 

97.19 Healthy Common average 

reference spatial 

filte 

PCA 

[28]  P300 LDA 

 

eSVM 

 

CNN-1 

 

MCNN1 

 

EFLD 

 

SRDA 

 

STDA 

 

HODA+LDA 

 

SWLDA 

 

Defining tensor-based 

feature reduction 

technique 

Higher Order Spectral 

Regression Discriminant 

Analysis (HOSRDA) 

LDA 96.5 

 

eSVM 96.5 

 

CNN-1 94.5 

 

MCNN1 95.5 

 

EFLD 95 

 

SRDA 95  

 

STDA 95 

 

HODA+LDA 94 

 

SWLDA 92.5 

 

Reg. + 

HODA+LDA 92  

 

Healthy 

(Data of BCI 

competition 

III) 

Bandpass filtered 

in the band 0.1–60 

Hz 

Each trial was 

bandpass filtered 

between 0.1 and 

10 Hz with 8-

order Chebyshev 

type I filter and 

then decimated to 

20 Hz 

HOSRDA 

[29]  P300 LDA Impact of fatigue 

brain behavior on 

P300 signals and 

developing wavelet 

multiple solution 

complex network to 

analyze P300 EEG 

signals 

95.42 

 

Healthy 10 The signals are 

filtered with a 

bandpass of 1–

40 Hz. 

The 

Independent 

Component 

Analysis (ICA) 

method is 

applied to 

remove eye 

movement and 

blink artifacts. 

- 

[30]  P300 Naïve-

Bayes 

Designing an 

interface for social 

attention disorders 

such as autism 

spectrum disorder 

using Virtual Reality 

Between 85-90 13 Healthy 

4 autism 

spectrum 

disorder 

Notch: 50 Hz; 

2Hz–30 Hz, 8th 

order 

Butterworth 

band-pass filter 

FC filter 

model 

Max-SNR 

filter 

model 

spatial 

filtering 

[22]  P300 SVM In P300 spells, based 

on the distance of 

each row and column 

according to the 

targeted character, 

separating the training 

data into groups at the 

same distance, 

measuring the 

accuracy rate in the 

eSVM classifier, 

examining its effect 

on the classifier 

diversity. 

97 Healthy 

(Data of 

BCI 

competition 

III) 

Bandpass 

frequency 

filtering 

between 0.1 and 

10 Hz 

eSVM 
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[31]  P300 SVM An approach based on 

multipurpose dual 

differential evolution 

(MOBDE) algorithm to 

optimize system 

accuracy and number of 

EEG channels used for 

classification 

92.8 (averaged) Healthy 

 

A band-pass filter 

of cut-off 

frequencies 

between 1 and 10 

Hz 

down 

sampling 

[32]  P300 SWLDA, 

FLDA 

To apply the vibration 

movement with piezo 

activators to the fingers 

in the Oddball paradigm 

method, to ensure the 

formation of P300 and 

to use for the 

classification of 2 and 4 

2 class. 85 

4 class. 60 

Healthy 

 

band-pass filtered 

from 0.53 to 120 

Hz 

moving 

average and 

down 

sampling 

[33]  P300 SVM Classification of 

schizophrenia patients 

and healthy individuals 

using both sensor level 

and source level features 

extracted from EEG 

signals recorded during 

an auditory oddball task 

88.24 

 

34 

Schizophrenia 

34 Healthy 

band-pass filtered 

at 1 to 30 Hz 

sensor-level 

features 

Source level 

features 

the 

combined 

features 

[34] P300 SVM Three distinctive 

feature-based multi-core 

learning (MKL) is 

recommended to learn 

an efficient P300 

classifier to improve 

character recognition 

accuracy in a P300 

speller BCI. 

98 Healthy 4th-order 

bandpass 

Chebyshev Type I 

between 0.1 Hz 

and 20 Hz. 

the three 

discriminant 

features: 

Raw 

samples 

Amplitude 

Negative 

area 

[35] P300 BN (Type of 

CNN) 

Develop a new CNN 

called BN (Batch 

Normalization) to detect 

P300 signals 

84 Healthy 8th-order 

bandpass 

Butterworth filter 

0.1 and 20 Hz. 

CNN 

[36] P300 SVM To design a new lie 

detection system and 

apply 2 new feature 

extraction methods in 

the system 

88.7  Healthy band pass at 0.01 

Hz to 100 Hz 

ocular artifact 

reduction 

Wavelet 

packet 

transform 

Nonlinear 

interdepende

nces 

 

[37] P300 Unsupervised Collection of 

matching filter and 

context analysis for 

P300 detection, use of 

unsupervised learning 

systems 

91.66 Healthy 

(physionet. 

org) 

Band-Pass 

Filtering 0.15 

Hz and 5 Hz 

cancel the 

saccadic spike 

poten- tial (SP)  

ICA 

Wiener filtering 

- 

[38] P300 LDA To evaluate the 

somatosensory 

discrimination and 

command after using 

the vibrotactile P300-

based Brain-

Computer Interface 

(BCI) in 

Unresponsive 

Vigilance Syndrome 

(UWS) and to 

investigate the 

predictive role of this 

cognitive process on 

clinical outcomes. 

97 Thirteen 

UWS 

patients and 

six healthy 

The data were 

notch-filtered at 

50 Hz and 

bandpass-

filtered within 

0.1–30 Hz. 

Trials with an 

amplitude above 

100 mV were 

automati- cally 

rejected. 

- 
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[39] P300 LDA The auditory paradigm, 

also known as the drip-

stimulating hearing BCI 

paradigm, the audio 

paradigm (BP), called 

drip paradigm (BP), was 

compared with the 

difficulty and difficulty 

scores to demonstrate the 

advantages of online 

accuracy and DP. 

80.87 (averaged) Healthy filtered with a 

third-order Butter- 

worth band-pass 

filter between 0.1 

and 30 Hz. 

 

[40] P300 LDA The effect of the 

translucent face model 

(STF-P) (the subject 

could see the target 

character when flashing) 

and the traditional face 

model (FP) (the subject 

could not see the target 

character when flashing) 

Performance comparison 

in terms of transparency 

in terms of transparency 

95.2 Healthy Band-pass filtered 

0.5-30 Hz 

 

Downsampli

ng 

Winsorizing 

[41] MI SVM Examination of EEG 

signals of 4 different 

states 

Turning hands on or off 

with the audio video 

command 

Open and close hands 

with silent video 

Pressing the piano with 

the same two ways 

command 

87.5 Healthy band-pass filtered 

from 0.5 to 40 Hz 

common average 

reference 

visual in- spection 

Common 

Spatial 

Pattern 

(CSP) filter 

[42] MI Naive Bayes A correlation analysis 

was performed between 

various quantitative 

evaluation metrics of 

motor imageries. For this, 

the actions to be done by 

the subjects were taught 

in the first step, the most 

effective image strategy 

was determined in the 2 

and 3 steps. 

87 (ortalama) Healthy bandpass filtered in 

4– 

40 Hz range with a 

4th-order 

Butterworth filter,  

Common 

Spatial 

Pattern 

(CSP) filter 

[43] MI Linear 

Regression 

Design a system to 

modulate activity in the 

default mode network 

(DMN) without involving 

sensorimotor paths by 

instructing to activate 

their reference memories 

or focus on a process 

without reminder content. 

ALS 60.8 

Healthy 62.5 

11 Healthy and 

5 ALS 

ICA  computed the 

trial-wise 

log-

bandpower 

of the 

averaged, 

combined y- 

and a-range 

at every 

channel 

location 

using the 

Fourier 

transform. 

[44] MI LDA 30 healthy SMR-BCI 

participants were 

trained to control right 

hand movement and 

SMR-based BCI on 

separate days for five 

days with traditional 

bar feedback (CB) or 

visual funnel feedback 

(UF) or multimodal 

(visual and auditory) 

funnel feedback (MF). 

63 30 healthy  power 

spectral 

density 

(PSD) 
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